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First-Generation Biofuel Production

* USA: Largest Producer. (CORN)
e Carscanrun on blends of up to 10% ethanol.
e E85 available.

* Brazil: Largest Biofuel Program. (SUGARCANE)
* No pure gasoline available (E18-E25).
*  97% of the cars sold in 2011 are flexfuel (E18 — E100).

e Other Countries: Sweden and France have E85 available.




Second-generation Biofuels
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p— First-generation biofuels

3 Uses food sources: corn starch, sugar cane,
Pt (carbohydrates monomers).
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< L3 Second-generation biofuels

Uses agricultural waste: bagasse, corncob, woodchip, ...
Microbes evolved the strategy, the main point is to reduce costs.
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“Most bacteria release the cellulolytic enzymes to the environment and try to capture
the enzymatic product, however some of them build large enzymatic complexes that
are up to 50 times more efficient”

Simulations guiding Experiments

“Cellulosomes were discovered more than 30 years ago and due to the size and
characteristics of this complex there is almost no clue why they are so efficient”
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Why Blue Waters?



From single enzymes to multi-enzymatic complexes

Cellulosomes



Cellulosomes are a large consortium of enzymes
arranged as highly efficient nanomachines.

e Clostridium thermocellum cellulosome
consists of up to 63 different enzymes
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Studying Cellulosome Components C Celllosome Scaffolding
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Type lll Cohesin-Dockerin

Using Atomic Force Microscopy and Steered '

. . . Collaboration with: Prof. Ed Bayer &
Molecular Dynamics we are characterizing Prof. Hermann Gaub & Dr. Michael Nash
Cohesin-Dockerin interactions.
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R. flavefaciens Cellulosomes
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Single Molecule Experiments:
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Inverted Binding Mode — Low Force Class?

Standard Binding Mode

Standard Binding Mode

Inverted Binding Mode
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Why the Inverted Binding Mode is also stable?

Dockerin ! Dockerin
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Extreme High Force



Catch Bond?
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Contact Surface
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Building Atomistic Cellulosome Model



Building a Cellulosome Model

e SdbA: SHL domain, Unknown domain, Type Il cohesin

* CipA: Type Il Dockerin-XModule, 7 Type | cohesin, CBM, 2 Type | cohesin

7,
g * 5 Enzymatic Domains: (1is9, 1daq), (2cn3, 1ohz), (3c7e, 1gmm, 1gmm, 1daq),
8 (3k4z, 1r15, 3pdd, 3zgx, 1daq), (3zm8, 1daq)
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Generalized Simulated Annealing — GSAFold

GSAFold NAMD Plugin — Allows ab initio structure prediction

New implementation on Blue Waters to allow conformational search

* Amino acid residues connecting Type | Cohesin domains are disordered proteins and a random
conformation with lower energy can be found using stochastic searching algorithms such as the GSA.

* GSAFold coupled to NAMD searches low-energy conformations to be used as starting points for the
molecular dynamics studies.
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Collaboration with: Marcelo Melo
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Thank You!!!



